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ABSTRACT: Although a number of pitfalls of QSAR have been
corrected in the past decade, the reliability of QSAR models is
still insufficient. The reason why QSAR fails is still under hot
debate; our study attempts to address this topic from a practical
and empirical perspective, evaluating two relatively large tox-
icological data sets using a typical combination of support vector
machine (SVM) and genetic algorithm (GA). Our results
suggest that the vast number of equivalent models to be chosen
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and the insufficient validation strategy are primarily responsible for the failure of many QSAR models. First, a method often
produces much more equivalent models than we might expect, and the corresponding descriptor sets show little overlap, indicating
the unreliability of the conventional approaches. Moreover, although external validation has been considered necessary, validation
on an arbitrarily selected independent set is still insufficient to guarantee the true predictability of a QSAR model. Therefore, more
effective training and validation strategies are demanded to enhance the reliability of QSAR models. The present study also
demonstrates that combinatorial or ensemble models can greatly reduce the variance of equivalent models, and that models built
with the most frequently selected descriptors used by the equivalent models seem to yield more promising performances.

KEYWORDS: QSAR modeling, reliability, predictability, external validation, combinatorial model, ensemble method, support
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1. INTRODUCTION

Quantitative structure—activity relationship (QSAR) models
have been widely used in drug discovery and development, as
well as in predictive toxicological studies and regulatory support."
Although the past decades have seen significant contributions of
QSAR to these apphcatlons, e.g., reduction of cost, time and the
use of animals,” the true predlctablhty of QSAR models has not
lived up to expectations,* and the reason why QSAR fails is still
currently under hot debate.’°

The reliability and robustness of QSAR models have captured
much attention in the past decade,” '® aiming to improve the
models’ true predictability. For example, the modeling commumty
has shown an increased awareness of the incorrect use of ¢* as a
criterion for a model’s predictability; and a consensus seems to have
been reached that the high value of internal validation is not a
sufficient criterion for the high predictive power of QSAR model, and
that external validation is the only way to establish a reliable QSAR
model."""> With respect to the internal validation, especially when
suffering from unavailability of external data, leave-one-out (LOO)
and leave-many-out (LMO) cross validation and Y-randomization
(i.e., permutation tests) are recommended as valuable validation
steps. However, the validation and prediction should not be
performed beyond the applicability domain of QSAR models.”"
Data quality and training sample size were also re?orted to have
great impact on the reliability of QSAR models.’

Despite the effort devoted to investigating pitfalls of QSAR
the whole situation has not changed a lot: QSAR still often fails.*
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Recently, Maggiora® suggested that the chemical space is not as
smooth as previously thought, and the existence of activity cliffs is
responsible for the low predictability of most QSAR models.
Different views were also present to explain the failure of QSAR
models. Doweyko® attributed the failure to the improper selection
of models likely caused by the overarchmg irrelevant or chance
correlation. Johnson® also argued that “the manner in which
QSAR is practiced is more responsible for its lack of success than
any innate cause.”

QSAR is known for establishing correlation between chemical
structure and biological activity, and the success of a model
greatly depends on how well it characterizes the structure. There
are several known issues that restrict the QSAR model. Chemical
structure is encoded in a numerical form in terms of molecular
descriptors, in which information loss is unavoidably introduced.
Additionally, the increasingly large number of molecular descrip-
tors generated by the modern technique further confounds our
selection of the most informative (or biologically relevant) ones.
Theoretically, an ideal predictive QSAR model should capture
the most informative molecular descriptors and represent a
hypothesis regarding the underlying physical or biological phe-
nomenon, because a model only possesses true predictability if it
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is biologically relevant. However, the wrong molecular descriptor
set is often chosen, resulting in an incorrect model.

Naturally, the question is raised of whether it is possible for us
to reach a near optimal descriptor set and model by using the
conventional computational approach. It is no doubt that, given
hundreds or even thousands of descriptors available, some
descriptors are more biologically relevant and informative than
the others. Hence, it is understandable that to obtain a model
with a certain predictive power and minimize descriptors has
been a common goal in the field of QSAR, the underlying
hypothesis of which is that the modeling technique used is able
to capture this subset or at least a near-optimal subset. But is this
true? Are the conventional approaches really able to capture the
optimal descriptor set and model?

The primary objective of our study is to try to answer the above
questions. First of all, we attempted to determine if it was possible to
retrieve the most informative descriptors using only the conventional
approach. Assuming that the best fitting model is able to capture the
most informative descriptors, or at least some of them, removing
these descriptors from the descriptor pool and rebuilding the model
using the remaining descriptors should result in a decreased fitting
and prediction accuracy. Thus, it is rational to anticipate a downward
trend in fitting and prediction accuracy if these steps are repeated
many times. With this in mind, two relatively large toxicological data
sets with more than 400 molecular descriptors were investigated.
A typical combination of support vector machine and genetic
algorithm (SVMGA) were used to obtain a best fitting model, and
the corresponding descriptor set was then removed from the des-
criptor pool; the same process was repeated based on the remaining
descriptors. Interestingly, the results of this study demonstrated
that the number of equivalent descriptor sets was higher than we
expected, and no obvious downtrend could be observed for even one
of the data sets. This suggests that the most informative subset of
descriptors may not exist, or that the SVMGA method employed
here is unable to identify the most important subset of descriptors.

This study illustrated that a high accuracy of a randomly
selected external set does not necessarily imply a high predictive
power of a QSAR model. Much research has emphasized the
importance of external validation for QSAR modeling. As a
result, applying an independent set, separated from training
samples or collected from other sources, for external validation
has become an indispensible step in many studies. However, can
this external validation process guarantee the true predictability
of a QSAR model? Unfortunately, our study illustrated that there
was no obvious relationship between the accuracies of two
randomly selected external sets. In other words, a QSAR model
with a high accuracy on an external set does not necessarily also
have a high accuracy on another external set. Thus, it is not
proper to use the accuracy of an arbitrarily selected external set as
a criterion for the true predictability of a QSAR model.

Despite the uncertainty mentioned above, there are still ways
to reach a more reliable descriptor set and model. Two possible
approaches were proposed in this study, and their results were
recorded. We illustrated that combining equivalent models can
greatly reduce the variance, and that building models with the
most frequently selected descriptors used by the equivalent
models yields more promising performances.

2. MATERIALS AND METHODS

2.1. Data Sets. The two relatively large toxicological data sets
used in this study were taken from the literature, i.e., the hERG

Table 1. Summary of Data Sets

no. of training no. of external no. of external no. of
data set sets sets [ sets 1T descriptors
hERG 561° 1795 437
T. pyriformis 644 339 110 407

“ Active, 213; inactive, 348. bActive, 220; inactive, 1575.

data set'* for the classification problem, and the Tetrahymena
pyriformis (T. pyriformis) data set™ for the regression problem,
respectively. The summary of these data sets is given in Table 1.
hERG Data Set. The human Ether-a-go-go Related Gene
(hERG) potassium channel, which is expressed in cardiac muscle
cells, is one of the major causes responsible for QT interval
prolongation and cardiac arrhythmia. The unwanted blockade of
the hERG channel has led to the withdrawal of many drugs from
the market. Thus, weeding out potential hERG channel inhibi-
tors in the early stages of drug discovery circle is of interest.

The hERG data set used here was collected from Li et al.’s
study.'* In their study, a SVM classifier was trained using 495
samples combined with pharmacophore-based GRIND descrip-
tors. The classifier was then applied to two external sets contain-
ing 66 and 1948 compounds, in which 72% and 73% of
compounds were correctly predicted, respectively.

In our study, 495 training samples and 66 external samples
taken from the literature were combined as the training set,
among which 213 were active and 348 were inactive. The other
1948 compounds were assigned to the external set. However, due
to limitations of the DRAGON software,'® the generation tool
for molecular descriptors used in this study, 153 compounds of
the external set could not be correctly identified; therefore, the
final external set used here contained 1795 compounds, among
which 220 were active and 1575 were inactive.

T. pyriformis Data Set. The T. pyriformis data set was used by
Zhu et al."> to address the robust and predictive models of
chemical toxicity through collaborative and consensual mean. It
consists of a training set of 644 compounds, an external set I of
339 compounds, and an external set IT of 110 compounds. The
training set and external set I were divided randomly from a
compiled collection. The external set II, on the other hand, was
taken from another study by Schultz et al.'” The prediction
accuracy (linear regression coefficient Ras) reported for the
external validation set I and II ranged from 0.71 to 0.85."

2.2. Molecular Descriptors. Molecular descriptors were calcu-
lated using the 5.4 version of the DRAGON software,m which can
generate as many as 1664 molecular descriptors. To simplify the
process, we considered only the 2D molecular descriptors in this
study, which included a total 929 of descriptors from 13 categories.
After removing those with invalid values, those with too many zeros
(greater than 90%), and those with small standard deviations (less
than 0.5), the final number of descriptors used in the hERG data set
and T. pyriformis data set were 437 and 407, respectively. All data
were scaled to (—1, 1) to avoid predominant features.

2.3. Methods and Implements. Support vector machine
(SVM), presented by Vapnik et al.,"® has been extensively applied
to QSAR modeling as a benchmark machine learning method
due to its high performance and resistance to overfitting. The
Java package of libsvm (version 2.8),"" a free support vector
machine tool, was used in this study.

Genetic algorithm (GA)? is one of the most popular feature
selection methods occurring in QSAR literature. The Java genetic
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Figure 1. Results based on recursively removing the best fitting descriptors of hRERG and T. pyriformis data set (SO trials). The x axis denotes the trials,
and the y axis denotes the accuracy. The fitness values of GA denote the S-fold cross-validation accuracy of the best fitting model obtained from the nth
trial. In each trial, the fitness descriptor set and SVM parameters were used to train a SVM model based on the whole training set. The results of the
training set and external set denote the fitting and external prediction accuracies predicted by using this SVM model, respectively.

algorithm package, Jgap (version 3.4.4),>" was used for descriptor
selection and parameter optimization.

Other methods used in this study for comparison included the
following:

(1) k-nearest neighbors (kNN): The kNN algorithm
classifies an unseen sample by a vote of k-nearest training
instances as determined by some distance metric, typically
Euclidean distance. In this study, the KNN method was
implemented in the Java programming language, and its
parameter k was determined using a nested S-fold cross-
validation from 1 to 15 and a step of 2.

(2) J48: Avariant of C4.5 decision tree implemented in Weka
(version 3.5.8),” a famous software package implemen-
ted in Java and available at http://www.cs.waikato.ac.nz/
~ml/weka/ under the GNU General Public License; the
default settings were used.

(3) CART: A classification and regression tree version im-
plemented in Weka; the default settings were used.

(4) Random Forests (RF): Default settings recommended by
Breiman™ were used, and 1000 trees were built in a
classifier.

(5) ASVMwithout feature selection (compared to the SVMGA):
RBF kernel was adopted, and the cost C and parameter y were
tuned by a %nd search on [1073, 1072 .., 10%] and [10™°,
107% .., 10%], evaluated using a nested 5- fold cross-validation
on each training data set. All Java programs were running
under a Java SE Runtime Environment (build 1.6.0 _11-b03).

2.4. Validation. One of the most important tasks of the

modeling process was defining of GA fitness function. For the
classification problem, although measurements such as receiver
operating characteristic (ROC) or area under the curve (AUC)
were highly recommended,” we used the accuracy as our
performance metric for simplicity since it was sufficient to our
analysis. For the regression problem, the same performance
metrics used in Zhu et al.’s study'® were adopted:

Qab52 =1- Z(Ye )Z/Z(Ye}q) - <Y>ex‘p)2 (1)
— Y (Ve = Ypred)"/ X (Yo — (Vexp)®  (2)

MAE = ¥¥ -

RabsZ =1

Ypred| /1 (3)
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Figure 2. Results based on 100 trials of evaluation using a typical combination of SVM and GA on the whole hERG and T. pyriformis data sets, ordered
by the prediction accuracy of external set I. The x axis denotes the trials, and the y axis denotes the accuracy. The fitness values of GA denote the S-fold
cross-validation accuracy of the best fitting model obtained from the nth trial. In each trial, the fitness descriptor set and SVM parameters were used to
train a SVM model based on the whole training set. The results of the training set and external set denote the fitting and external prediction accuracies

predicted by using this SVM model, respectively.

Here, Qus represents the squared S-fold cross—vahdatlon
correlation coeflicient for the fitting function, R, is the
coefficient of determination for the external validations
sets, and MAE is the mean absolute error for the linear correla-
tion between the predicted value Y..q and the experimental
value Yo

3. RESULTS

3.1. Investigation on Recursive Removal of the Best
Fitting Descriptors. The typical combination method of SVM
and GA has been a benchmark approach for QSAR modeling.
To assess how well SVMGA captured the most informative
descriptors, we recursively removed the descriptor set occurring
in the best fitting model from the descriptor pool, and rebuilt the
model using the remaining descriptors. We repeated this process
SO times (trials) and evaluated the corresponding fitting and
prediction accuracy in each trial.

Here, the GA was set to 50 population and 30 evolutions. By
adjusting the gene and mutation probability, we restricted the GA
to select only 3—10 descriptors. The fitness values were set to
zeros for those chromosomes with fewer than 3 descriptors or
more than 10 descriptors being selected. We called it a trial after
30 evolutions were finished, and the corresponding best fitness
value, descriptor set, and SVM parameters were recorded.
Subsequently, a final SVM model was trained on the whole

603

training set, using these fitness descriptor sets and the SVM
parameters, and applied to the same training set and external data
sets. The fitting and external prediction accuracies were also
recorded. This process was repeated for 50 trials for each of the
two data sets (Figure 1).

Interestingly, despite that more and more best fitting descrip-
tor sets were removed from the descriptor poo], little influence
was observed on the fitness and external prediction accuracies for
the hERG data set. Even in the 50 trial where only 48 descriptors
were left, the total reduction of its fitness value was no more than
6%, and there was no obvious reduction observed for external
prediction accuracy, either. A slight downward trend of fitness
value and external prediction accuracy can be observed for the T.
pyriformis data set, in which there were only 6 descriptors left
after 50 trials (Figure 1). However, in the trials from 1 to 12, in
which 101 descriptors were removed from the descriptor pool,
the reduction of the fitness value was only around 3%, and the
total reduction of external prediction accuracy was also not
significant. This phenomenon indicates that the most informa-
tive subset of descriptors may not exist, or that the SVMGA
employed here tends to miss some of the most important subset
of descriptors in each trial. Here, we prefer the latter explanation,
with reasons illustrated in the coming section.

3.2.Investigating the Relationship of Multiple Equivalent
Outcomes. We investigated the relationship of the multiple
equivalent outcomes yielded by the SVMGA method based on
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Table 2. The List of Most Frequently Selected Descriptors of
100 Trials

hERG T. pyriformis
no. descriptors frequency descriptors frequency
1 H-047 37 nDB 47
2 nF 31 0-057 44
3 MAXDN 20 ALOGP 43
4 nX 17 CICO 42
S T(F..F) 17 MAXDP 42
6 H-053 16 AMW 38
7 nO 16 piPC03 33
8 C-006 15 nROH 27
9 TPSA(Tot) 14 nArOH 26
10 TPSA(NO) 13 MLOGP 2
11 EEig05x 12 H-046 20
12 nR=Cs 11 nO 20
13 ZM1V 11 SEigp 19
14 C-001 10 BLTA96 18
15 Ss 10 SEigZ 18
16 T(N.F) 10 ALOGP2 17
17 ERigldr 9 0-058 15
18 Pol 9 Ms 14
19 CICO 8 TPSA(Tot) 14
20 DELS 8 BLTD48 13

the whole descriptor set, especially focusing on the overlap of
multiple equivalent descriptors and the variance produced by
corresponding models. Here, the same settings used in the
previous section were employed, except that the restriction on
the number of descriptors selected by GA was widened to 3—20,
which enabled us to involve more possible informative descrip-
tors at each trial. We repeated the same process for 100 trials
without removing the descriptor set from the descriptor pool,
which resulted in 100 equivalent descriptors and models.
The best fitness value of GA and the fitting and external
prediction accuracies based on the SVM model trained on the
whole training set using the best fitting parameters were given
(Figure 2). The trials were reordered and shown in ascending
order of the prediction accuracy of external set L. We also
examined the overlap of the descriptors selected in the 100 trials
to determine the ability of SVMGA to capture the most
informative descriptors. The top 20 frequently selected descrip-
tors are shown in Table 2, and their meaning can be referred to
the DRAGON software.

It was very clear that there was no obvious relationship
between external prediction accuracy, fitting value of GA, or
fitting accuracy of training set in either of the two data sets. As the
external prediction accuracy of hERG data set rose from about
75% to 84%, the corresponding fitness value and fitting accuracy
of the training set were bounded in a certain range but without
any significant trend. The T. pyriformis data set showed similar
results; the R* of external set I ranged from about 0.77 to 0.88. It
was surprising to see that as the prediction accuracy of external
set I rose, there was no similar trend observed for the prediction
accuracy of external set IL This suggests that the external
prediction accuracy may not be a proper criterion for the true
predictability of a QSAR model. Even a high Q” on training set
and a high R® on an external set still seem insufficient to

guarantee the high predictive power of a QSAR model on other
data sets. For example, considering trial 100 with relatively high
Q? (0.86) of GA and R” (0.88) of external set I, the model yielded
a R* as low as 0.60 for the external set Il Contrary to this,
considering trial 29 with relatively small Q> (0.84) of GA and R*
(0.82) of external set I, the R* for external set II was as high
as 0.69.

Another interesting observation is that there was a notable gap
between the accuracies of external set I and external set II. The
accuracies of external set I were much closer to the fitness values
than those of external set II. A possible explanation is that the
former was more similar to the training set than the latter. If this
were the case, the accuracies of the two external sets should be
alike after consideration of only those external samples within the
applicability domain defined by the training set. However, we
repeated the same process by considering applicability domain
measured by Euclidean distance to the descriptor centroid of
training set and found no significant difference (Figure S1 in the
Supporting Information). As can be seen from Figure S1 in the
Supporting Information, even only those samples in the applic-
ability domain were taken into account, the gap between the two
external sets still exists, thus, consideration of applicability
domain alone is not sufficient for assessing a model’s predict-
ability on an external set.

To get a deeper insight into why the gap exists between the
two external sets, we combined the training set with the two
external sets, regenerating the three data sets based on a k-mean
cluster algorithm, thus making the data sets more similar to each
other (Figure S2 in the Supporting Information). Results of
Figure S2 in the Supporting Information showed that the
accuracies of external set I and external set II were closer than
those of Figure 2; however, a high R? on the external set I still did
not necessarily indicate a high R* on external set Il Here, the
similarity to the training set was measured by the similarity of a
molecular descriptor to the descriptor centroid of training set;*®
the applicability domain was defined by the maximal Euclidean
distance to the descriptor centroid of training set estimated using
those 95% training samples nearest to the centroid. The differ-
ence between Figure S1 and Figure S2 in the Supporting
Information seems to suggest that the distribution of a data set
is also an essential important factor that may account for its
accuracy.

The overlap of descriptors of Table 2 showed that none of
descriptors were found in more than half of all equivalent models,
although 3 to 20 descriptors were allowed to be selected for each
SVMGA model. For the hERG data set, all except 3 descriptors
occurred in no more than 20 models, indicating there was very
little overlap of descriptors occurring in these equivalent models.
Once again, this further suggested that the SVMGA is apt to miss
part of, or even all of, the most important subset of descriptors (if
there is any). For the T. pyriformis data set, the overlap of
descriptors was slightly greater, which may suggest that it is
easier for SVMGA to capture some of the important descriptors for
the T. pyriformis data set than for the hERG data set. This may be the
reason why the downward tendency of the T. pyriformis data set was
more notable than that of hERG data set as seen from the Figure 1.

As intercorrelation of descriptors may have a negative impact
for descriptor selection and model development, the descriptor
pairs with highest Pearson correlation coefficient (=90%) were
also given for the T. pyriformis data set (Table S1 in the
Supporting Information) and for the hERG data set (Table S2
in the Supporting Information). Considering the top 10 most
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Table 3. Prediction Accuracy of the hERG External Set Based
on All Descriptors and the Most Frequently Selected
Descriptors by Using Different Classification Methods

method 10 descriptors 20 descriptors 50 descriptors  all descriptors

KNN 0.812 0.816 0.805 0.769
J48 0.802 0.817 0.802 0.788
CART 0.828 0.795 0.812 0.795
RF 0.827 0.831 0.828 0.817
SVM 0.831 0.821 0.805 0.789
av 0.820 0.816 0.810 0.792

frequently selected descriptors, 4 descriptors (i.e, ALOGP,
CICO, piPC03 and MLOGP) for T. pyriformis data set and 3
descriptors (i.e., nF, TPSA(Tot) and TPSA(NO)) for T. pyr-
iformis data set were found to have high correlation coefficients
with some of the other descriptors. These results showed that the
high correlations among descriptors are very common and may
play an important role for the reliability of QSAR models.
However, they do not seem to be the most important factor
leading to the unreliability of QSAR models. For example, with
respect to the hERG data set, since the descriptor nF had high
correlation with T(N..F) and F-083 (Table S2 in the Supporting
Information), we combined the frequencies of all these three
descriptors (Table 2) together and got a total overlap of 47.
Descriptors TPSA(Tot) and TPSA(NO) also showed high
correlation; after combining their frequencies (Table 2) together
we got a total overlap of 27. Both the total overlaps were less than
half of the number of trials, therefore, they should not be the
primary reason accounting for the little overlap of descriptors
occurring in the 100 equivalent models.

3.3. Reaching More Reliable Descriptor Set and Model
Based on Most Selected Descriptors. As can be seen from
Figure 2, SVMGA produced very diverse descriptor sets and
models in different trials. Moreover, zero overlap of descriptors
can be found in two equivalent models generated by the same
SVMGA approach with the same settings. The great variance of
the results yielded by these equivalent models remarkably
affected their reliability. Certainly, randomization is unavoidable
in a modeling process subject to many unstable factors. For
example, as a stochastic heuristic searching algorithm, GA tends
to get trapped into local optimization and yield different solu-
tions. However, how about compiling all these solutions together
and considering only those most selected descriptors? It is
reasonable to assume that the most important descriptors would
have a greater chance to be selected. Is this a possible way to
reduce the variance produced by chance? With this in mind, a
more reliable descriptor selection and modeling method was
proposed here based on the most frequently selected descriptors.

Five different classification methods were also employed to the
hERG data set to build different models based on the top 10, 20,
and 50 descriptors (Only the top 20 were shown in Table 2). The
models were trained on the training set and applied to the
external set. Their accuracies were compared with those obtained
by using all the descriptors; the results are recorded in Table 3.
Clearly, there were improvements when the classification meth-
ods were based on only the top 10, 20, or SO descriptors; an
average accuracy of 82% was achieved when using only the top 10
descriptors. SVM obtained the highest accuracy (83.1%), about
49% higher than the average accuracy based on all descriptors. It
should be noted that this accuracy was very close to the

maximum prediction accuracy on the external set (83.4%), as
can be seen from Figure 2. Similarly, for the T. pyriformis data set,
improvements can also be observed when using the top 10, 20,
and S0 descriptors, especially in terms of MAE. The overall best
results were those based on the top 20 descriptors, with R* = 0.87
and MAE = 0.25 for external set [, and R* = 0.67 and MAE = 0.36
for external set II. These values were similar to the maximum
external prediction accuracies from Figure 2, which were R =
0.86 and MAE = 0.33 for external set I, and R* = 0.7 and MAE =
0.42 for external set II. In short, models built with the most
frequently selected descriptors tend to yield higher or at least
comparable performance, and thus seem to be more reliable.

3.4. Reaching a More Reliable Model Based on Combina-
tion. Another approach presented here to reach a more reliable
model was through the combination of equivalent models. We
demonstrated that the combinatorial or ensemble model can reduce
the variance produced by their component models, and thus
enhancing the reliability. Combinations of 5, 10, 20, and 50 models
were investigated based on the 100 equivalent models obtained in
section 3.2; the external prediction accuracies and corresponding
standard deviations (stdev) were also provided for the hERG data
set (Table S) and T. pyriformis data set (Table 6). The accuracy and
stdev were obtained based on 1000 trials’ evaluations. For example,
for the combinations of § models, we randomly retrieved S of the
100 equivalent models without replacement and evaluated the
prediction results separately; the final prediction accuracy was then
evaluated by voting. This evaluation process was repeated 1000
times, and the results were averaged.

It is safe to say that the performance of combinatorial model
can be greatly enhanced. As the number of models combined
together increased, the accuracy steadily rose from 79.5% to
82.2% and reached a plateau at around 20 models, while standard
deviation dropped sharply from 2% to 0.3% (Table 5). A similar
trend can also be observed for the T. pyriformis data set in terms
of R* and MAE (Table 6). In short, the combinatorial models
produced performance better than those obtained by the best
single models with significantly less variance.

It is worth noting that, for the hERG data set, our methods
outperformed the SVM method used in the original literature'* by
about 10%. For the T. pyriformis data set, more promising results
yielded by our methods can also be observed, comparing with all
15 models developed in the original literature." It is interesting to
see that the consensus model developed in the literature' also
showed improved accuracy over other single models. This is
consistent with the idea that the combinatorial or ensemble model
is usually more reliable than its component models.

4. DISCUSSION

Numerous issues have been found to be associated with the
reliability of QSAR models, which can be categorized into data
issues (e.g., data quality and sample size), modeling issues (e.g.,
overtraining, chance correlation), and prediction issues (e.g.,
domain applicability).”® In this study, we focused on the training
and validation process and emphasized why the conventional
approach often arrives at the wrong model.

Two main objectives of QSAR models are (1) to predict
biological activity of untested and possibly unavailable com-
pounds and (2) to seek which physicochemical or structural
properties of compound are correlated with the biological
activity and to discover their relationships.”” In either case, a
good QSAR model should represent a hypothesis regarding the

dx.doi.org/10.1021/mp100423u |Mol. Pharmaceutics 2011, 8, 600-608
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Table 4. Prediction Accuracy of the T. pyriformis External Set Based on All Descriptors and the Most Frequently Selected

Descriptors by Using SVM
data set validation criterion 10 descriptors
external set I Q 0.841
MAE 0.283
external set IT Q 0.671
MAE 0.366

20 descriptors S0 descriptors all descriptors

0.868 0.885 0.843
0.254 0.241 0.299
0.672 0.653 0.670
0.363 0.379 0.384

Table 5. Prediction Accuracy and Standard Deviation of the
hERG External Set by Combining Different SVMGA Models

no. of models accuracy stdev
1 0.795 0.020

S 0.809 0.009

10 0.816 0.007

20 0.821 0.005

S0 0.822 0.003

underlying physical or biological phenomenon. Even if a QSAR
model is designed for predicting biological activity only (e.g., for
screening), we still need to ensure that the molecular descriptors
used in the model have some biological relevance and are not just
selected by chance: only if this condition is met can we guarantee
that the model possesses true predictability. As a result, the model’s
mechanistic interpretation has been seriously addressed in the
OECD principles that at least some possible associations between
the descriptors used in the model and the predicted end point
should be considered.?® Thus, selection of the best or near-best
relevant or informative molecular descriptor set during the modeling
or feature selection process is essential to reach a powerful model.

Although it is a common goal for many researchers to retrieve
as few explanatory descriptors as possible to facilitate interpreta-
tion of the QSAR models, whether the available feature selec-
tion methods are capable of capturing those most informative
descriptors still remains a question upon which little emphasis has
been given. It is rational for us to believe that, among the great
number of available descriptors, some are more relevant to the
mechanism than the others. Therefore, it is more likely that we
often arrive at the irrelevant descriptors by using the available
feature selection methods. Involving many irrelevant descriptors
into the model can greatly degrade predictive power.

The investigation results based on the recursive removal of
best fitting descriptors (Figure 1) suggest that the typical
SVMGA approach often fails to capture many of the informative
descriptors, letting them slip into subsequent modeling trials.
Thus, those informative descriptors are apt to be equally
distributed over whole trials, which explains why the fitting and
prediction accuracy shown in Figure 1 changes smoothly. The
overlap study (Table 2) further supported this idea; the low
overlap of different equivalent models suggests that the SVMGA
approach may capture only a very small part, or even none, of the
most informative subset of descriptors. The up and down of the
external prediction accuracy as seen in Figure 2 may also indicate
that some of the equivalent models are unable to capture the
informative descriptors very well and thus lead to the degradation
in accuracy. This suggests that the conventional approach often
tends to include irrelevant descriptors and does not always
capture the optimal informative descriptor set or reach the
best model.

Table 6. Prediction Accuracy of the T. pyriformis External Set
by Combining Different SVMGA Models

external set I external set IT

no. of models R? MAE R? MAE
1 0.831 0.294 0.604 0.431

S 0.867 0.267 0.659 0.378

10 0.872 0.263 0.665 0.374

20 0.874 0.261 0.668 0.371

50 0.875 0.260 0.670 0.370

Using different parameters for model training further in-
creased the total number of equivalent models. Nevertheless, it
is not sufficient to ascribe the failure of QSAR models exclusively
to the existence of too many equivalent models; the central
problem appears to be that we often choose the wrong model
from among them, which is why, despite of the availability of so
many validation strategies, the true predictive power of QSAR
models still cannot be guaranteed.

Nowadays, as the insufficiency of internal validation has been
realized, external validation for QSAR modeling has been
regarded as the only way to determine a reliable QSAR model.
Unfortunately, this concept is often misunderstood, and it is
common practice to consider the corresponding prediction
accuracy as a proof of the true predictability of the model after
validating the model on an external data set. Furthermore, it is
often the case that an arbitrary independent data set from training
samples or collected from other sources is used for external
validation without considering its nature. Although it is well-
known that there is no relationship between internal and external
predictability,*® there has been little emphasis on the relationship
between external predictability and true predictability. Our study
based on the T. pyriformis data set (Figure 2) shows that there
seems to be no relationship between accuracies of two different
external sets. This suggests that a high internal accuracy com-
bined with a high external accuracy based on an arbitrarily
selected external set is still insufficient proof of the true predict-
ability of a QSAR model.

The real problem seems to be determining what external data
set should be chosen and how to validate the QSAR model with
it. To address this, applicability domain was considered, which
has already been a major topic in the modeling, validation, and
prediction process. However, even when we repeated the process
and considered only external samples within the applicability
domain, the results changed little (Figure S1 in the Supporting
Information).

One possible explanation for this phenomenon is that the
prediction result of a QSAR model is dependent on not only the
applicability domain but also the distribution of data set in the
chemical space. It is more likely that data sets with similar
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distributions in the chemical space tend to exhibit similar
prediction performance (Figure S2 in the Supporting In-
formation). For example, the prediction results of external set
in the T. pyriformis data set seem closer to the fitness values of the
training set (S-fold cross-validation) than those of external set IT
(Figure 2) because the compounds in external set I were chosen
in a similar way as in the training set. On the other hand, Wold
and Dunn have stated that QSAR models normally only have
local validity.*" As a result, local models are often superior to
global models in terms of prediction accuracy for similar
compounds;”*** a global model that covers a more diverse range
of chemical space tends to lose detailed information of certain local
spaces and may show poor performance even for similar com-
pounds in those areas. As such, it is readily comprehensible that a
global model has diverse predictive power over different regions of
the whole chemical space; in other words, a QSAR model may
show different performance for data sets having different distribu-
tion. In this regard, a model’s predictability may be better assessed
by regions other than the whole chemical space.

There are several methods to obtain a more reliable model.
One method is to improve the training process by avoiding the
generation of too many irrelevant descriptors and models, and by
minimizing chance correlation as much as possible. In this regard,
new methods that are capable of extracting those most informa-
tive descriptors are desirable. Another method is to take advan-
tage of the available equivalent models and counteract their
variance by considering combinations of various candidate
models. A third method is to develop new validation strategies
to pick out the most powerful model from all possible models.

Two possible approaches presented in this study try to make
use of the available equivalent descriptor sets and models. One
approach is based on the assumption that those most used
descriptors extracted from the equivalent models are more likely
to be informative,®® and the other approach is based on the
hypothesis that higher accuracy can be achieved by using
combinatorial or ensemble models** (Tables S and 6).

We found that it can be beneficial to construct models based
on the most frequently selected descriptors (Tables 3 and 4). In
our study, a number of models trained with different machine
learning methods were developed based on the hERG data set.
All five of the different machine learning methods produced
higher accuracies (with an average improvement of about 3%) by
using only the top 10 descriptors than by using all descriptors
(Table 3). This shows that frequently selected descriptors are
more likely to have associations with the hERG channel inhibi-
tion than randomly selected descriptors. In fact, seeking con-
sistent descriptor sets for different machine learning methods is
of interest. Dutta et al.*> developed an ensemble feature selection
method to reach a consistent descriptor set for multiple QSAR
models, but at the cost of their accuracies. In contrast, our
method produced not only consistent descriptor sets but also
higher accuracies.

Another possible way to improve QSAR is by using combi-
natorial or ensemble models, which often produce higher
accuracies than single models. A combinatorial model can be
created by combining numerous homogeneous or heteroge-
neous (e.g,, generated by different learners) models, and both
can significantly improve the performance while substantially
reducing variance. In fact, combinatorial models have been
successfully applied to QSAR modeling in the past.'>*>~*

Both approaches proposed in this study yield promising
accuracies that are better than those yielded by their most

powerful component models. Therefore, as the general goal of
external validation is to assess the predictive power of available
models and ultimately to choose the most powerful one, these
approaches are preferable especially in cases where there are not
enough samples available for external use.

5. CONCLUSIONS

The failure of QSAR models has captured much attention.
From a practical point of view, this failure can arise from two
aspects. On the one hand, the conventional training process often
produces too many possible solutions whose validation results
vary in a wide range and are difficult to manage. On the other
hand, the available validation strategies are still not strong
enough to guarantee the true predictability of available models.
In this study, two potential approaches are proposed from the
side of training to obtain more successful models, and possible
reasons are also presented from the side of validation to explain
the limitations of currently available external validation strategy.
In any case, caution should be exercised when external validation
is used to assess the predictive power of QSAR models, and
further study is suggested to explore more effective training and
validation strategies.
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